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Ontario M3J 1P3. Canada 
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Abstrdct. The sixth, seventh and eighth virial coefficients of hard discs and hard spheres are 
evaluated numerically (Monte Carlo integration). I improve on the best previous estimates for 
the seventh vied coefficients. and the integration of the eighth virial coefficient is new. The best 
estimatesforthesecoefficientsforharddiscrare Bi/b6 =0.11486(7)and Bs/b’ =0.06514(8): 
and for hard spheres Bi/b6 = 0.01307(7) and B8/bi = 0.00432(10). b is the second virial 
coefficienl in each case. Pad6 approximations U) the excess pressure and the excess free energy 
are computed fram these resulk and compared r0 data ofhenvise obtained. 

1. Introduction 

The thermodynamic properties of an inert fluid has long been the subject of intense 
investigation. Idealized models of inert fluids include hard discs (in two dimensions) and 
hard spheres (in three dimensions). The vinal expansion of the equation of state has long 
been known to provide an accurate theoretical description in the fluid range (Mayer and 
Mayer 1940). In general, the vinal expansion is an expansion of the pressure p in terms of 
the (number) density p of the fluid 

(1.1) 
P - = ~ ( 1 +  BZP + B d  + B4p3 + . . .) kT 

where k is Boltzmann’s constant and T is the temperature. The vinal coefficients Bi are 
sums of integrals over the coordinates of i particles. Each integral is usually represented 
as a graph; if one follows Ree and Hoover’s modification of the original UrseU-Mayer 
formalism (Ree and Hoover 1964, Kilpatrick 1971, Hill 1987). then 

1 - i  

where. 

The vinal coefficient in (1.2) is the infinite volume limit over a sum of connected, weighted 
clusters (or graphs) of particles. The limit over the volume can be removed by fixing one of 
the labelled particles at the origin. In (1.3) the cluster is expressed as a sum over labelled 
blocks Gi (sometimes called irreducible graphs) with i vertices. (Blocks are simple graphs 
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with connectivity 2.) The product is over all pairs of labels in Gi, and I is an indicator 
function which is 1 if kl is in the edge-set of Gi, and zero otherwise. f is the Mayer 
f -function defined by fi,, = exp(-@(Tk, r { /kT) )  - 1 where @ is the pair-potential. 

Only the first few vinal coefficients have been computed for realistic potentials. The 
number of blocks on i vertices grows rapidly with i, and it soon becomes a considerable 
challenge to compute the next coefficient in the series. So far, the vinal coefficients for 
hard discs and hard spheres have been computed up to 87  by Ree and Hoover (1964, 1967) 
and by Janse van Rensburg and Tome (1992). For both hard discs and hard spheres, Bz, 83 
and B4 are known exactly by explicit integration. E5 (and 8 6  for hard discs) was computed 
accurately by Kratky (1976, 1977, 1982% b) while Janse van Rensburg and Tome (1992) 
computed E, and 87  to improve on the good results of Ree and Hoover (1964, 1967) 
using a deterministic integration scheme (Hammersley points). 88 is computed in this 
paper. (The experience with Hammenley points indicated that they perform at best only 
marginally better than random points in a Monte Carlo integration, if at all. Consequently, 
we integrated Bs by Monte Carlo integration.) The results are tabulated in table 1. Observe 
that vinal coefficients Ei are usually expressed as &/E;-'. (The second vinal coefficients 
E, are given by one half the volume of the sphere with unit radius in d dimensions, the 
corresponding hard s p h m  having unit diameter. The third vinal coefikients for discs were 
calculated by Tonks (1936). and for spheres by Boltrmann (1899) and Happel (1906). The 
fourth vinal coefficient for discs were calculated by Rowlison (1963) and Hemmer (1965). 
and for spheres by van Laar (1899) and by Nijboer and Van Hove (1952). The best values 
for the fifth vinal coefficients are due to Kratky (1982a,b). Kratky (1982b) also computed 
the very accurate value for the sixth vinal coefficient of discs. The best values for the sixth 
vinal coefficient for hard spheres, and the seventh and eighth vinal coefficients for hard 
discs and hard spheres are those in this paper. These results are all listed in table 1.) 

E J Janse van Rensburg 

Table 1. Vmal coefficients. 

T*.o dimensions Three dimensions 

5 
8 

4 4 3  - B d 8 :  5 - y  
B d B ?  0.532231 8 0.2869495 
BWB," 0.33355604(4) 0.110252(1) 
BslB: 0.19883(1) 0.038 808(55) 
B7/$ 0.114859(70) 0.013071(70) 
&/E2 0.065 140(80) 0.00432(10) 

It is possible to construct a rational (Fade) approximation to the equation of state (1.1) 
once a few of the vinal coefficients are calculated. These Pad6 approximations to the 
equation of state have proved to be very accurate over the entire fluid range in the case of 
hard discs and hard spheres, which are :he subject of study in this paper. It is therefore 
sensible to improve these Pad6 approximations, which we do in section 3 (see for example 
Ree and Hoover 1964, 1967, Valleau 1991). Ree and Hoover (1967) and Hoover and Ree 
(1968) developed a Pad6 approximation for the excess pressure and the excess free energy 
for hard discs and hard spheres, based on the known vinal coefficients. A comparison 
to density scaling Monte Carlo showed remarkable agreement between the Pad6 and the 
Monte Carlo results; this is a remarkable illustration of the power of Pad6 approximations! 
(See Valleau 1991.) A more accurate Pad6 approximation will also improve the estimation 
of the radius of convergence of the vinal series. While a rigorous lower bound for this is 
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known (Lebowitz and Penrose 1964), it seems to be far below the true radius of convergence 
(because of the good agreement between the Pad& and numerical simulations). 

2. Computational Details 

The Mayer f-functions take a particularly simple form in the case of hard discs and hard 
spheres: the pair-potential is infinite when two discs or spheres overlap, and zero otherwise. 
Consequently, fx.1 is equal to -1 if the discs or spheres with labels k and I overlap, and 
zero otherwise. In (1.3) we note that the contributions from two isomorphic but differently 
labelled blocks are exactly the same. Thus, we can write (1.3) as a sum over unlabelled 
blocks, if we multiply the contribution to vi, from each unlabelled block, by the number of 
ways we can label the block, i.e. 

Here, the sum is over all (unlabelled) blocks Hi with edge-set E(&). s(Hi) is the number 
of ways we can label Hi and I ( e )  is an indicator function which is 1 if the edge e is in the 
set E(&), and zero otherwise. 

One can now in principle compute any vinal coefficient. using either (1.3) or (2.1) 
as definitions for vi. In both cases the calculation would proceed by generating labelled 
blocks randomly. This is done by taking a set of labelled random points, obtained subject to 
certain constraints, and connecting any two of them which are closer than unit distance. If 
the graph is a block, then in the case of (1.3). it contributes to every Ci which is a subgraph 
of it. Since the f-functions have a minus sign, the sign of the contribution depends on the 
number of edges in the block. More care has to be taken in the case of (2.1): let gi be the 
number of times we can label Hi (in (2. I)) so that it is a subgraph of the generated block. 
Then the block contributes to the integral giHi if Hi is a subgraph of (the now unlabelled) 
block. (Observe that gi # s ( H i )  in general; the constraints imposed on the random points 
usually imply that we cannot generate all labelled blocks this way.) 

Ree and Hoover (1964, 1967) introduced a resummation of (2.1) which makes the 
calculation a bit simpler, and more efficient. Define f = 1 + f ,  and introduce 1 = A - f, 
for every edge e which has i(e) = 0 (that is, the edges in the complement are assigned 
weights f - f ). The product over the Mayer f-functions and the !-functions can be 
performed to give 

where t ( H i )  is the symmetry factor resulting from the resummation. It is an easy exercise 
to check that 

where E(X)  is the edge-set of X, and h(Gi, Hi) is the number of distinct labellings of 
H; which has a canonical labelling of Gi (see later) as a subgraph. The sum is over all 
unlabelled blocks. This resummation of (2.1) over a sum of Ree-Hoover complements has 
two advantages. The first is that every randomly generated block contributes potentially to 
exactly one integral, and secondly, many of the r (Hi)  tum out to be identically zero. This 
reduces the number of blocks which we compute significandy, and should have a marked 
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effect on the size of the uncertainly interval when the sum in (2.2) is cmied through at the 
end of the calculation. 

It is expensive to find the connectivity of every graph generated in the Monte Carlo 
integation. The best approach is to list all the blocks in a hash table before the integration, 
using linear probing (see Knuth (1973) for details). A query to the hash table can then 
determine whether a given graph is a block. 

2.1. Blocks 

The number of unlabelled blocks on i vertices can be determined using Polya’s theorem. 
This number grows fast with i, if i = 6, then it is 56, fori = 7, it is 468 and for i  = 8 it is 
7123. This situation is improved with the calculation of Ree-Hoover complements in the 
resummation of (2.2); many of the ti are zero. This leaves us with 23 blocks if i = 6, 171 
if i = 7 and 2606 if i = 8. It is not an easy task to determine the number of blocks on i 
vertices; and it is even more difficult to find them all. There are two ways one can follow 
to find all blocks: the first is a building-up strategy, the second a top-down approach. 

The building-up strategy works by generating new blocks on i vertices by adding a 
vertex to graphs on i - 1 vertices. This appears to be an expensive operation, since one can 
add a vertex in 2;-’ ways to any given graph with i - 1 vertices. I followed the top-down 
approach Generate all graphs on i vertices and sieve out the blocks. 

One can represent any labelled graph on i vertices as a string of binary digits by 
ordering the edges of the graph in a canonical fashion (i.e. by ordering the edges as 
12, 13,. . . , li, 23,24,. . . ,2i, 34,. . . , (i - 1)i). If an edge is present in the graph, then 
the digit 1 is put in its place in the string; if it not, then the digit 0 is put in its place in the 
string. In this manner, every labelled graph corresponds uniquely to an integer. Unlabelled 
graphs are represented by the smallest integer which corresponds to a labelling of the graph. 
I shall think of this representation as canonical for unlabelled graphs. All the labelled graphs 
can now be generated in the computer by starting at the complete graph on i vertices, and 
subtracting 1 until we reach the integer 0, which corresponds to the null graph. Every 
labelled graph generated must be examined to determine whether it is a block. There is 
a string of theorems regarding blocks, which proved to be very helpful. (Observe that a 
Hamiltonian graph is always a block.) They are: 
(1) If a graph has a vertex of degree 1, then it is not a block. 
(2) If G is a simple graph with i vertices x ~ , x z ,  .. . ,xi such that deg(x1) 4 deg(x2) 6 

. . . < deg(xi), and if deg(xk) > k f I ,  for each k = 1,2,. . . , i - 1 -deg(xi-,), then G 
is a block. (Bondy 1969; see Berge 1985). 

(3) (Dirac) If G is a simple graph with i vertices, where i 2 3, then if deg(u) 2 i / 2  for 
each vertex U in G, then G is Hamiltonian (see Wilson and Watkins 1990). 

(4) If a graph G is not connected, then it is not a block. 
(5) (Harary) The maximum connectivity of a connected graph with m edges and i vertices 

is 2m/i (Berge 1985). 

Of course, these will not find all the blocks, and finally one has to check the graphs 
about which uncertainty exists directly. The computer time needed was also greatly reduced 
by hashing the blocks as they are found, before we try to find a canonical representation. 
In fact, the blocks were labelled so that the degrees of the vertices are in decreasing order, 
something which one must do in any case to apply Bondy’s theorem. After the fact one 
can go and find the canonical representations. Since many blocks will have the same 
representation when the degrees of vertices are in decreasing order. this reduces the number 
of canonical representations to be computed greatly. Using this strategy, about 250 hours on 
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a fast workstation were needed to find all blocks on eight vertices, blocks on Seven vertices 
were found in about 30 minutes. The Ree-Hoover complements were computed from the 
blocks using (2.3). 

2.2. Computational methods and results 

The Monte Carlo integration of the integrals represented by the Ree-Hoover complements 
can now proceed by generating clusters of points subject to some constraints. In the 
calculations of Ree and Hoover (1964, 1967). the points were generated by putting the 
h t  point at the origin. The second point is put within unit distance from the first, and 
the third within unit distance from the second, and so on. This arrangement is illustrated 
in figure I ,  and one can sample any (labelled) graph which has the graph in figure 1 as 
a spanning subgraph. The calculation is made more efficient if there exists a number of 
labellings of the graph which has the graph in figure 1 as a spanning subgraph. For example, 
the graph in figure 2(a) can be labelled to have figure 1 as a spanning subgraph in two 
different ways. (Here, the number of vertices is 6). There are also some graphs which 
cannot be labelled to have the graph in figure 1 as a subgraph, and we cannot compute the 
contribution of the integral by sampling graphs subject to the constraint in figure 1. If the 
number of vertices is 6, then figure 2(b) is such a graph. We must therefore also generate 
graphs subject to a different set of constraints so that we are sure that every contribution to 
the vinal coefficient is calculated. In the case of the sixth vinal coefficient, the constraints 
in figure 3 were found to be enough to ensure that every integral is estimated. The number 
of random graphs generated for each constraint waS 2.5 x IO8, so that Bg was estimated over 
sample size of 5 x I@ random graphs. The data were analysed in the usual way, and the 
result is given in table 1. The error bar is a single standard deviation. 8, were computed 
by generating random graphs subject to the constraints in figure 4. Again, 2.5 x 10' random 
graphs were generated for each constraint, so that it was computed over a sample size of 
7.5 x IOR. Bs was computed over the constraints in figure 5, again with a sample size of 
2.5 x IOR for each constraint for a total sample size of 1.5 x lo9. These mults are in table 1. 

Figure 1. Random clusters of dh& 01 spheres can be generated by putting the first sphere at the 
origin. the second is put within unit distance from the first the third within unit distance from 
the second, and so on. In this graph, each labelled vertex coresponds to a disc or a sphere. 
Any labelled graph which has this p p h  as a spanning subgraph can be sampled by these. 

Ree and Hoover (1967) extrapolated their Pad6 approximants to predict values for 
B s / B i  for hard discs and spheres. For hard discs the predicted values were 0.0635 from 
a P(3,4) Pad6 and 0.0630 from a P(4,3) Pad6. Both these values are close to what 
was finally obtained in this paper. For hard spheres the corresponding predictions were 
0.0058 from P(3,4) and 0.0049 from P(4,3), again quite close, but one can argue that the 
overestimation is significant. KraVcy (1977) used several methods to extrapolate to higher 
vinal coefficients for spheres. His estimates for the eighth coefficient varied between 0.0042 
and 0.0052 which overlaps the calculation in this paper. 

The results obtained in fable 1 compare favourably with earlier estimations of the vinal 
coefficients (the fifth vinal coefficients in table 1 are due to Kratky (1977, 1982a)). &/B: 
for discs and spheres were estimated to be 0.1992(8) and 0.0386(4) by Ree and Hoover 
(1964, 1967)  and 0.198 82(7) and 0.039 19(7) by Janse van Rensburg and Tome (1992). 
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I 
Figure 2 (a) This graph has two distinct labellings which has t h e p p h  in figure 1 as a spanning 
subgraph. (b) This graph has no labelling which has the graph in figure I as a spanningsubgraph, 
and can consequently not be computed by generating random graphs subject lo the EOnSMinIs 
in figure 1. 

6& 

Figure 3. The random dusters used to compute the sixth virial coefficient Every black on six 
verlices can be inbelled 10 have either. or both ofthese as spanning subgraphs. 

Figure 4. The random clusters used to compute Lhe Seventh vinal coefficient. 
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Figure 5. The random clusters used U) compule the eighlh virial ccefficienr 

The best value for discs (0.198 83(1)) is due to Kratky (1982b); for spheres, the best result 
is that in this paper (0.038808(55)). For B7/B$ Ree and Hoover (1964, 1967) obtained 
0.1141(5) and 0.0138(6), while Janse van Rensburg and Tome (1992) obtained 0.11490(9) 
and 0.013 11 (8). All these results are in close agreement with the values computed in table 1, 
while the error bars in table 1 are marginally better. (The results in Janse van Rensburg 
and Tome (1992) were obtained using Hammersley points in a deterministic integration 
scheme. This scheme turned out to be slightly better than Monte Carlo integration under 
the circumstances; for that reason the confidence intervals on B6/B; and B7/B$ are not 
much better in this paper, despite the fact that larger samplings were done. The best values 
for the seventh and eighth vinal coefficients are the results from the calculation in this 
paper.) 

3. Pad6 extrapolations 

3.1. Excess pressure 

We are now in a position to add some Pad6 approximations for the excess pressure to the 
list computed by Ree and Hoover (1967). These are, for discs, 

bp - 0.20049(bp)2 + 0.006W(bp)3 
I - 0.98250bp T 0.242 16(bp)’ Pd3.3) = 

bp - 0.12663(bp)* +0.01896(Z~p)~ +0.00422(bp)4 +0.00076(bp)5 
1 - 0.908 63bp + 0.197 28(bp)* h ( 5 , 3 )  = 

(3.2) 

(3.3) 
bp -0.77755(bp)2+0.13155(bp)3 -0.00251(bp)4 

1 - 1.55955bp + 0.81890(bp)’ - 0.14640(bp)3 Pz(4.4) = 
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bp - 0.72597(bp)2+0.11278(bp)3 
1 - 1.507 98bp + 0.759 7 9 ( b ~ ) ~  - 0.125 I 2 ( b ~ ) ~  - 0.002 3 9 ( b ~ ) ~  pz(3,5) = 

and for spheres, 

bp + 0.075 46(bp)’ + 0.019 3 9 ( b ~ ) ~  
1 - 0.549 5460 + 0.075 90(bp)’ P3(3,3) = 

bp T O.I4962(bp)’ + 0 . 0 3 8 6 X b ~ ) ~  T 0.004 3 3 ( b ~ ) ~  + 0.00040(bp)s 
1 - 0.475 3Sbp -r O.C-48 79(bp)2 S ( 5 . 3 )  = 

bp - 0.1 I S  63(bp)’ + 0.009 9 4 ( b ~ ) ~  - 0.00290(bp)4 
p3(4’4) = 1 -0.74363bp+O.18776(bp)~-0.017 lZ(bp)3 

bp T 0.01798(bp)’+ 0.014 I7(bpY 
I - 0.60702bp + 0.10661(bp)2 - 0.00270(bp)3 - 0.00079(bp)4 P3(3,5) = 

Here, b is the second vinal coefficient (b  = 52). and p is the number density. It is possible 
to estimate the next vinal coefficients from these Pad6 approximations. In the case of discs 
we found 

and 

an 

and 

the ci 

0.0365 
B 9 / @  = 0.0366 I 0.0366 

0.0203 

0.0206 

: of spheres we found 

0.001 42 

0.001 42 

0.00046 

0.00047 

from Pz(5.3) 
from P2(4,4) 
from P2(3,5) 

from P3(5,3) 
from P3(4,4) 
from P3(3,5). 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The predicted values for 5 9  and Blo are quite insensitive to the particular Pad6 approximation 
used; this should give confidence in the stability of the Pad&. 

The singularities in the Pad6 approximations are listed in table 2. F e  roots in table 2 
are the values of bp at which the denominator or the numerator has zero value.) pz(3,3) 
for discs has singularities the density (1.12&O0.O8i)po. where po = 2 / d  is the density at 
closest packing (the locations of the singularities are given in units of po since the density 
is often reduced in this way in the literature). Pz(5.3) exhibits a singularity at 1.00p0, 
barely inside the range of physical packings. Pz(4.4) and P2(3,5) have singularities inside 
at densities 0.89~0 and 0.92~0, which is well inside the range of physical packings. These 
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Pad6 RooD 

P2(3.3) Numerator 0, 6.12, 26.9 
denominator 2.03 i-O.12i 

fi(5.3) Numerator 0, -5.58f6.09i. 2.80i3.38i 
denominator 1.81, 2.79 

Pz(4.4) Numerator 0. 1.84, 4.73. 45.8 
denominator 1.62. 1.98 10.52i 

P2(3.5) Numerator 0, 2.00. 4.44 
denominator -58.0, 1.66, 200+0.51i 

q (3 .3 )  Numerator 0. -1.95f6.91i 
denominator 3.62 * 0.26 

P36.3) Numerator I 0, -5.77f5.91i. 0.36i6.04i 
denominator 3.07. 6.67 

P3(4,4) Numemtor 0, -1.32 f 7.431, 6.06 
denominator 2.96, 4.00 f 1.93i 

P3C3.5) Numerator 0. -0.63 * 8.381 
denominator -15.60. 3.01, 4.57 f2.461 

Pad& do not give a description of the hard disc fluid at densities higher than this, and 

Figure 6 is a plot of P2(3,3) and Pz(5.3) against some molecular dynamics data taken 
from Erpenbeck and Luban (1985). The radius of convergence of Pz(3.3) is determined 
from the mots in the denominator to be 1.121~0. As Ree and Hoover (1967) observed, there 
is a finite maximum in Pz(3.3) on the real axis at 1.12~0, and it is tempting to believe that 
this indicates the appearance of a thermodynamically unstable region beyond this maximum. 
However, this observation does not persist in the case of the higher-order Pad&. Here, we 
observe a singularity on the real axis, which also determines the radii of convergence. The 
higher-order Pad& appear to contain more information than pz(3.3); the finite maximum 
has become a singularity on the real axis, and its location has shifted towards lower density. 

P3(3,3) has singularities at 
(1.22 9 O.Ogi)po (in this case, PO = A). Consequently, there is a finite maximum in 
P3(3,3) at 1.12~0 on the real axis. This maximum is replaced by singularities on the real 
axis in the higher order Pad&. P3(5,3) exhibites a singularity at 1.04~0, P3(4,4) has it at 
1.00~0 and P3(3.5) has it at 1.02~0; all close together. Indeed, there is not much difference 

virtually indistinguishable from each other. The radii of convergence for each of these are 
given by the location of the singularities in &ch case; for 5(3,3)  it is 1.Up0, while for 
the higher-order Pad& it i s  at 1.04~0 (P3(5,3)), 1.00~0 (P3(4,4)), and 1.02~0 (P3(3,5)). 
Figure 7 indicates also that these Pad& approximate the molecular dynamics data (taken 
from Erpenbeck and Wood (1984)) quite well. There is a slight divergence between the 
Pad& at higher density visible in figure 7, but it is not clear (from this data) which Pad6 
would provide a better description of the system. 

3.2. Excess free energy 

The excess free energy A,, can be expressed as an infinite series using the vinal coefficients 
in the following way: 

~ one suspects that the approximation will be suspect in a region close to these densities. 

In the case of spheres a clearer picture. emerges. 

~ ~ between the higher-order Pad&; in figure 7 these are plotted, and we observe that they are 

(3.13) 
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Figure 6. The reduced pressure of a fluid of hard discs against plm. ?be dah points are 
molecular dynamics data (Erpenbeck and Luban 1985). 

0 // 0.2 0.4 0.6 0.8 : 1 

Figure 7. The reduced pressure of a fluid of hard spheres against plm. The data points are 
moleculm dynamics data (Erpenkck and Wwd 1984). All the Pad6 approximations describe 
lhe data well over a wide range of densities in the Ruid region 

Pad6 approximations can now be easily computed in exactly the same fashion as for the 
excess pressure, except that the vinal coefficients Bi are now modified by a division with 
(i - I). For discs I obtained the following expressions mere, Q(n* m) is the order+, m) 
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Pad€ approximant to A, , /NkT):  

Qz(3-3) = 
bp - 0.27679(bp)’ + 0.006#(bp)3 

1 - 0.667 79bp + 0.089 73(bp)’ (3.14) 

bp - 0.59465(bp)’ + O.O3249(b~)~ + 0.00255(b~)~ + 0.00024(bp)5 
1 - 0.98565bp + 0.24047(bp)’ Qz(5.3) = 

(3.15) 

(3.16) 
bp - Q.89791(bp)’+0.15367(bp)3 - 0.00223(bp)4 

4, = 
1 - 1.288 92bp + 0.48023(bp)z - O.#471(bp)3 

bp - 0.8548O(bp)’ + 0.13086(b~)~ 
(3.17) 5, = 1 - 1.245 8Obp + 0.44056(bp)’ - 0.03463(b~)~ - O.C@501(b~)~ 

and for spheres: 

bp - 0.081 3 7 ( b ~ ) ~  7 O.o0492(bp)’ 
1 - 0.393 87bp + 0.03235(bp)z Q3(3.3) = (3.18) 

bP + 0.809 99(bp)’ + 0.031 9 9 ( b ~ ) ~  + 0.00667(b~)~ + 0.00051(bp)5 
1 + 0.49749bp - 0.219 13(bp)z Q3(5.3) = 

(3.19) 

bp - 0.450 1 2 ( b ~ ) ~  + 0.#263(bp)3 - 0.001 7 7 ( b ~ ) ~  
1 - 0.76262bp + 0.185 3O(bp)’ - 0.01429(bp)3 Q3(4,4) = (3.20) 

bp - 0.31 8 88(bp)’ + 0.03063(b~)~ 
1 -0.631 38bp +0.13229(bpjz-0.00851(b~j3 -0.00035(bp)4 Qd3.5) = 

(3.21) 

Table 3. Roots in the Pad& (excess free energy). 

Pade ROO@ 

Qz(3.3) Numerator 0. 3.95, 41.87 
denominator 2.08, 5.365 

Q2(5, 3) Numerator 0. -9.87 i 14.291, 1.99, 7.20 
denominator 1.85, 2.25 

Q2(4,4) NumeraUIr 0, 1.48, 4.84, 62.59 
denominator 1.48, 2.09, 7.18 

denominator -80.58, 1.52. 213, 7.67 

denominator 3.61. 8.57 

denominator -1.28, 3.55 

denominator 2.87. 4.01. 6.09 

denominator -36.19, 3.42, 4.23 f2 .28 i  

Qz(3.5) Numerator 0, 1.52, 5.01 

Q3(3.3) Numerator 0, 8.27f 11.61i 

Q30.3) Numerator 0, -15.24, -1.28. 1.73f9.86i 

Q3C4.4) Numerator 0, 2.94, 10.57 * 8.96i 

Qs(3.5) Numerator 0. 5.21 f 2.36 
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Figure 8. The reduced excess free energy of a fluid of hard spheres against pjw.  The Pad& 
approximations are vinually indistinguishable from each other. The data points a~ density 
scaling Monte Carlo (Wleau 1991) results. 

As before, b = Bz. The singularities of these Pad& are in table 3. For hard discs, 
Q2(3, 3) has a singularity at 1.15~0, which also determines the radius of convergence of 
the approximation. This value is close to that of the Pad6 Pz(3,3) of the excess pressure. 
Much of the structure of Pad& computed for the excess pressure is present in the above 
equations in table 3 we see that singularities at low pressure in Qz(4.4) and Qz(3.5) are 
cancelled by roots in the numerators. If these ‘unphysical’ singularities are ignored, then 
one observes that much of the remaining structure in these approximations is close to the 
structure observed in Qz(3.3) above. I conclude that these Pad& should be viewed with 
suspicion. In contrast with this, Qz(5.3) has a singularity at 1.02~0, and this also determines 
the radius of convergence of Q2(5,3). 

In the case of hard spheres one observes a singularity in Qs(3.3) at 1.22~0, this is also 
the radius of convergence of this approximation. Qs(5.3) has a singularity at -0 .43~0 ,  
which is cancelled exactly (up to the numerical accuracy achieved here) by a root in the 
numerator. Otherwise, Q3(5,3) has a second singularity at 1.2Op0, close in value to that 
of Q3(3,3). Q3(4,4) and Q3(3,5) have singularities at 0.97~0 and 1 . 1 5 ~  respectively, 
which also determines the radii of convergence of these approximations. In figure 8 the 
Pad& Q3(3,3), Q3(5,3), Q3(4,4) and Q3(3,5) are plotted. These are virtually identical, 
except for higher densities, where the curves start to diverge from each other. The data 
in figure 8 were graciously supplied by J P Valleau, obtained by a density scaling Monte 
Carlo simulation of 108 particles. There is no difference between those data, and the Pad& 
computed in this section, over the entire region of reduced densities fmm about 0.3 to 0.65. 

4. Conclusions 

In this paper the eighth vinal coefficient of hard discs and hard spheres were computed. This 
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extends the vinal series in these cases to eight terms, and the description of the equation of 
state is becoming more accurate with the addition of each new term. The values obtained 
are consistent with guesses in the literature (obtained usually by extrapolating from a Pad6 
approximation). The major difficulty in these calculations was the generation of all blocks 
on eight vertices. Higher vinal coefficients can only be computed with great difficulty; the 
number of blocks on n vertices grows superexponentially, and it will soon be impossible to 
generate them for the next coefficient in a reasonable CPU time. There are 194066 blocks 
on 9 vertices, compared to 7123 on 8 vertices, so that at best, it will take 30 times longer 
to generate the blocks on 9 vertices, when compared to 8. 

A new graphical expansion, originally due to Lesk (1975) and generalized by Kratky 
(198%) deserves closer examination. Kratky showed that the number of graphs in this 
expansion (the overlap graph expansion) is fewer than that of the Ree-Hoover expansion 
for the seventh vinal coefficient; it is not clear whether this persists for the eighth vinal 
coefficient, if the overlap graph expansion exists. Kratky conjectures the following: ‘It is 
possible to express B, for any n in terms of overlap graphs’. If this conjecture tums out 
to be true, then one is presented with an exciting new possible technique for evaluating 
virial coefficients. In addition. new work by Lieb and Sokal (1993) uses rearrangement 
inequalities to prove interesting bounds on vinal coefficients. 

A second issue which must be considered is that of important sampling techniques 
in the Monte Carlo simulations. Of course, the integration in this paper is in effect an 
important sampling, since we constrained our trial states to be from the connected graphs 
in figures 1 to 5. A second possible improvement would be to weight the bond-lengths 
between discs or spheres. However, I am unsure as to which graphs contribute the most 
to the vinal coefficients. My data indicate that the complete graph and the cycle graph 
contribute much, although the first is a very compact configuration, and the second a very 
dilute configuration. It is thus not obvious how one should weight the bonds towards 

sampling on dilute configurations). 
New Pad6 approximations to the reduced excess free energy and to the reduced excess 

pressure were computed and compared to data otherwise obtained. The Pad& all agree 
well with dah obtained by molecular dynamics and Monte Carlo simulations of hard discs 
and hard spheres. In general, I observed little difference between the Pad6 approximations. 
Those Pad6 approximations with a singularity which cancels between the denominator and 
the numerator (Q2(4,4), Qz(3.5) and Qs(5.3)) cannot be considered serious improvements 
compared to lower order Pad6s. The existence of a (mathematical) singularity (in the low 
density region) makes these Pad& suspect, and if the cancellation is carried through, the 
result is a lowee-order approximation. I conclude that these Pad6 approximations contains 
at best the same information as a lower-order Pad&, and at worst, may be unreliable. 

Lastly, the calculation of the eighth vinal coefficient of other systems, such as the 
Lennard-Jones fluid, can be carried through without much effort. Investigators who may 
want to do this can obtain the list of blocks and their Ree-Hoover complements from me 

~ shorter (important sampling on compact configurations), or towards longer bonds (important 

~ 
~ by email. 
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